ENERGY EFFICIENT SYSTEMS
Recover & recycle your waste heat

- Absorption Machines - Heat Pumps & Chillers
- Thermal Energy Storage Solutions
- Special Heat Exchangers
CNIM GROUP
A trusted partner for turnkey installations

Over 60 years of turnkey plants & equipment

As a specialized European provider with a well-established portfolio of proprietary technologies, CNIM's solutions have been successfully deployed around the world for more than 60 years.

CNIM has provided 281 turnkey waste-to-energy conversion lines and over 250 biomass plants and boilers, for use either by local authorities or designated operators.

On the equipment side CNIM has provided more than 400 LAB® Flue-gas treatment systems and over 150 MW of absorption machines in 26 countries.

CNIM Key figures (2016)

- € 540 million turnover
- 55% export revenue
- 2,500 Employees

CNIM, committed to reducing greenhouse gas emissions and to energy savings

Compliance with environmental laws

CNIM believes that every drop of fuel should be 100% used, and used carefully, to induct long-term environmental footprint reduction of facilities and installations.

Better profitability

To improve competitiveness, increasing energy efficiency of your process and facilities, CNIM helps you cutting down operating costs – through fuel savings.

CNIM Energy Efficient Systems recover waste heat from various sources, including boilers, engines, turbines and furnaces. To integrate those systems within its clients facilities, CNIM offers audit & expertise, bespoke design & manufacturing, and worldwide aftersales.

CNIM Turnkey Systems

Heat Sources

- Solar fields
- Scrubbers
- Boilers
- Furnaces
- Dryers
- Turbines
- Engines
- District Heating
- Industrial Processes

Energy Out put

- HEAT
- COLD
- POWER

DON’T WASTE YOUR HEAT, CREATE VALUE FROM IT.

www.cnim.com • energyefficiency@cnim.com
In the evaporator, the liquid refrigerant is colder than the incoming water: it captures the heat from it until it evaporates.

In the absorber, the refrigerant vapour is captured by the LiBr solution. It returns to the liquid state and dilutes the LiBr solution (which then loses its absorption capacity). The heat of absorption is released in the LiBr solution, which in turn transfers it to the cooling fluid.

In the generator, the heat source transfers its heat to the dilute LiBr solution. The refrigerant picks up the heat and evaporates again. The newly concentrated LiBr solution is reinjected into the absorber.

In the condenser, the refrigerant vapor issued from the generator gives its heat to the water which arrives in the exchanger. Thus, the refrigerant liquifies and returns to the evaporator. It captures again the heat from the water, evaporates and thus starts the loop again.

The principle of absorption was discovered more than 2 centuries ago in 1777 by Gerald Nairne. He used sulfuric acid to absorb water vapor and thereby producing cold. Nowadays the most commonly used working fluid pair is composed by water and lithium bromide, a stable and non-toxic salt solution. Absorption Machines use thermal energy (steam, hot water, ...) as their primary energy source. Mechanical or electrical energy is only required for a couple of small pumps, dedicated to the circulation of the internal fluids, which usually consume about 1% of the cooling load.

Absorption machines, a green & economic alternative to conventional compression machines
« We act for a sustainable future, a cleaner environment, and energy savings. »

BUSINESS SOLUTIONS

<table>
<thead>
<tr>
<th>KEY PRODUCTS</th>
<th>ADDED VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>PowerGen Enhancement</td>
<td>Designed to improve overall efficiency of the Plant. Our solutions recover heat from scrubbers, turbine outlets or geothermal sources to produce more energy at the right time.</td>
</tr>
<tr>
<td>District Heating Absorption Heat Pump</td>
<td></td>
</tr>
<tr>
<td>Turbine Air Cooling Absorption Chiller</td>
<td></td>
</tr>
<tr>
<td>Steam Accumulator</td>
<td></td>
</tr>
<tr>
<td>High Temperature Heat Storage</td>
<td></td>
</tr>
<tr>
<td>Green Cooling Systems</td>
<td>Providing cooled water in summer or the whole year round, these solutions give you the best cost of energy when waste heat (from district heating or engines) is available.</td>
</tr>
<tr>
<td>District Cooling Absorption Chiller</td>
<td></td>
</tr>
<tr>
<td>Engine Driven Absorption Chiller</td>
<td></td>
</tr>
<tr>
<td>Cold Storage</td>
<td></td>
</tr>
<tr>
<td>Industry Energy Saving</td>
<td>Achieve more energy autonomy and lower fossil fuel consumption with these solutions that recover waste heat from industrial ovens, dryers or other available sources.</td>
</tr>
<tr>
<td>Pre-heating Absorption Heat Pump</td>
<td></td>
</tr>
<tr>
<td>Process Cooling Absorption Chiller</td>
<td></td>
</tr>
<tr>
<td>Steam Accumulator</td>
<td></td>
</tr>
<tr>
<td>High Temperature Heat Storage</td>
<td></td>
</tr>
<tr>
<td>O&G Productivity Enhancement</td>
<td>Increase the efficiency by cooling key equipment of onshore or offshore Oil & Gas plants whilst using only the process heat available on site.</td>
</tr>
<tr>
<td>Condenser Cooling Absorption Chiller</td>
<td></td>
</tr>
<tr>
<td>Turbine Air Cooling Absorption Chiller</td>
<td></td>
</tr>
<tr>
<td>Compressor Cooling Absorption Chiller</td>
<td></td>
</tr>
<tr>
<td>On-board Cooling</td>
<td>Respond to the intensified emission regulation and perform substantial fuel saving with these innovative solutions.</td>
</tr>
<tr>
<td>Anti-rolling & pitching Absorption Chiller</td>
<td></td>
</tr>
<tr>
<td>Cold Storage</td>
<td></td>
</tr>
</tbody>
</table>

TECHNICAL SPECIFICATIONS

- **Steam driven machines**
 - Up to 10 MW* heat recovery @ 40°C (120 – 180°C)

- **Hot water driven machines**
 - Up to 10 MW* cooling power (80 – 95°C)

- **Steam, air, water or thermal oil driven machines**
 - Up to 10 MW* heat recovery @ 40°C, (120 - 500°C)

- **Multisource drive: steam, water, process fluid**
 - Up to 10 MW* cooling power @ 0 - 50°C, (80 - 200°C)

- **Steam, hot water , thermal oil driven machines**
 - Up to 5 MW cooling power @ 6 - 20 °C (90 - 200°C)

*CNIM proposes also specific design with cooling capacity over than 10MW

« We act for a sustainable future, a cleaner environment, and energy savings. »

www.cnim.com • energyefficiency@cnim.com

www.cnim.com • energyefficiency@cnim.com
Flue gas valorisation

Within a waste treatment plant, heat is recovered from wet flue gas treatment at ~40°C.

The absorption heat pump transforms this heat into higher temperature energy (~75°C) which is fed into the district heating network.

The heat pump is driven by high pressure steam from waste boiler or steam turbine bleed.

Cost efficient turbine inlet air cooling

Air cooling at a gas turbine inlet enhances efficiency and power output.

A very low temperature absorption chiller (2°C) produces chilled water which in turn cools the air in a direct heat exchanger. The chiller is powered with steam from the heat recovery system at the turbine exhaust.

Renewable cooling for smart cities

10 absorption chillers are feeding Helsinki district cooling network. They are powered by the residual heat of the district heating.

Engine driven green cooling

To increase its energy efficiency and to reduce environmental emissions, Cologne Airport installed 2 absorption chillers.

The environmental friendly chilled water produced is used for the airport cooling.

As other key infrastructures, Cologne Airport is participating to a sustainable urban development.
transform the waste heat from various stages of your process into cost saving opportunities. Get a green and economic approach to preheat energy intensive processes or cool down (up to 0°C) key equipment, without producing CO2. Increase the efficiency of your key equipment (turbine, compressors,...), recovering heat from different processes whatever the transfer fluid is. As a result, you cut down your operating costs and reduce your overall emissions.

Free-energy ethylene cooling

At a plastic plant, an absorption chiller using low cost, low temperature energy from a nearby biomass plant produces 2.4 MW cooling capacity at 8°C for the pre-cooling of plastic molding machines.

Low carbon furnace pre-heating

800 t CO2/year saved

Our waste heat recovery system (including scrubber, exchangers and absorption heat pump) captures heat contained in the hot air out of the cooling zone, to transfer it to the air at the entrance of the oven. This preheating requires no fuel unlike conventional solutions. Energy efficiency reduces CO2 and the operation costs.

Green & cost-effective ship

Simply driven by recovered waste heat from engines, our system produces chilled water for process cooling in a cost-effective and sustainable way.

The absorption chiller was designed for maritime application: intense corrosion prevention, high vibration resistance, proper functioning with pitch and roll, installation and minimum maintenance.
ENERGY EFFICIENT SYSTEMS
Recover & recycle your waste heat

CNIM Energy Efficiency

Systems
- Turnkey systems

Products
- Absorption Chillers & Heat Pumps
- Thermal Energy Storage Solutions
- Special Heat Exchangers

Services
- Audit & Expertise
- Worldwide Maintenance & After-sales

To contact us:
energyefficiency@cnim.com